US009208314B1

a2z United States Patent (10) Patent No.: US 9,208,314 B1
Bhatkar 45) Date of Patent: Dec. 8, 2015
(54) SYSTEMS AND METHODS FOR 8,769,692 B1* 7/2014 Muttiketal. 726/24
DISTINGUISHING CODE OF A PROGRAM 2006/0236397 Al* 10/2006 Horne 726/24
2007/0168982 Al* 7/2007 Homeo 7177124
OBFUSCATED WITHIN A PACKED 2008/0028462 Al* 1/2008 Burtscherc....... 726/22
PROGRAM 2011/0145921 Al* 62011 Mathuretal. ...cocco...... 726/23
2014/0189882 Al* 7/2014 Jung et al. . 726/27
(71) Applicant: Symantec Corporation, Mountain View, 2014/0283058 Al* 9/2014 Gupta ... 726/23
CAUS) OTHER PUBLICATIONS
(72) Inventor: Sandeep Bhatkar, Sunnyvale, CA (US) Roberto Perdisci; Classification of Packed Executables for Accurate
.) . . Computer Virus Detection; Year: 2008; Georgia Institute of Technol-
(73) Assignee: Symantec Corporation, Mountain View, ogy, Atlanta, GA 30332, USA; p. 1-15.%
CA (US) Mark Kennedy; Methods and Systems for Detecting Obfuscated
N Executables; U.S. Appl. No. 12/130,827, filed May 30, 2008.
(*) Notice: SUbJeCt. to any dlSCIalmer{ the term of this Bilge, Leyla et al., “Thwarting Real-Time Dynamic Unpacking”,
patent is extended or adjusted under 35 http://www.syssec-project.eu/m/page-media/3/unpacking-
U.S.C. 154(b) by 57 days. eurosecl1.pdf, as accessed Nov. 7, 2013, (2011).
(Continued)
(21) Appl. No.: 14/135,004
(22) Filed: Dec. 19, 2013 Primary Examiner — Monjour Rahim
(74) Attorney, Agent, or Firm — ALG Intellectual Property,
(51) Imt.ClL LLC
GO6F 11/00 (2006.01)
GOGF 12/14 (2006.01) (57 ABSTRACT
GOG6F 12/16 (2006.01) A computer-implemented method for distinguishing code of
GO3B 23/00 (2006.01) a program obfuscated within a packed program may include
GOGF 21/56 (2013.01) (1) retrieving memory of the packed program that includes
(52) US.CL the code of the obfuscated program in an unobfuscated state
CPC e, GO6F 21/563 (2013.01) and unpacking code that unpacks the code of the obfuscated
(58) Field of Classification Search program when the packed program is executed, (2) identify-
CPC ittt GOO6F 21/55 ing an import address table within the memory of the packed
USPC oottt es e 726/23 program, (3) determining that the import address table is an
See application file for complete search history. import address table of the code of the obfuscated program,
(4) determining that a region of code within the memory of
(56) References Cited the packed program may be the code of the obfuscated pro-

U.S. PATENT DOCUMENTS

8,336,100 B1 12/2012 Glick et al.

8,418,245 B2* 4/2013 Homec.oooevvvvvrenrnenn. 726/22
8,479,291 Bl 7/2013 Bodke

8,561,193 B1 10/2013 Srivastava et al.

gram by determining that the region of code uses the import
address table, and (5) performing a security operation on the
region of code. Various other methods, systems, and com-
puter-readable media are also disclosed.

20 Claims, 7 Drawing Sheets

System
100

Modules
102

Retrieving Module
104

Identifying Module
106

Import-Address-Table
Determining Module
108

Code-Region Determining
Module

110

Security Module
12

US 9,208,314 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Shevchenko, Alisa “Malicious Code Detection Technologies™, http://
www.computerlinks.com/FMS/1366 1.malicious__code_ detec-
tion__technologies.pdf, as accessed Nov. 7, 2013, Kaspersky Lab,
Inc., Woburn, MA, (2008).

Shevchenko, Alisa “The evolution of technologies used to detect
malicious code”, http://www.securelist.com/en/analysis/
204791972/The_evolution_ of technologies_used_to_ detect__
malicious_ code?print_mode=1, as accessed Nov. 7, 2013,
Kaspersky Lab ZAO, (Apr. 4, 2012).

Yason, Mark V., “The Art of Unpacking”, http://www.blackhat.com/
presentations/bh-usa-07/Yason/Whitepaper/bh-usa-07-yason-WP.

pdf, as accessed Nov. 7, 2013, Black Hat Briefings and Training, Las
Vegas, NV, (2007).

“Generic unpacking techniques.pdf—Google”, http://b00ks-dOc.
googlecode.com/svn/trunk/b00ks-dOc/research/
Malware%20Packer/Generic%20unpacking%?20techniques.pdf, as
accessed Nov. 7, 2013.

Ming, Jiang “A Quick Survey on Automatic Unpacking Techniques-
37, http://www.personal.psu.edu/jum310/blogs/jiang_ ming/2013/
04/a-quick-survey-on-automatic-unpacking-techniques--3. html, as
accessed Nov. 7, 2013, (Apr. 25, 2013).

Alejandro Arellano, et al.; Systems and Methods for Automatically
Identifying Changes in Deliverable Files; U.S. Appl. No. 14/025,796,
filed Sep. 12, 2013.

* cited by examiner

U.S. Patent

Dec. 8, 2015 Sheet 1 of 7

System
100

Modules
102

Retrieving Module
104

Identifying Module
106

Import-Address-Table
Determining Module
108

Code-Region Determining
Module
110

Security Module
112

FIG. 1

US 9,208,314 B1

U.S. Patent Dec. 8, 2015 Sheet 2 of 7

US 9,208,314 B1

Computing System
200

Packed Program
204

Unpacking Code I

206

Obfuscated Program
208

Code
210

Retrieving Module
104

v

Identifying Module
106

v

Import-Address-Table
Determining Module
108

!

Code-Region Determining
Module
110

Memory
212

v

Region of Code
214

1T T T]

Security Module
112

FIG. 2

U.S. Patent Dec. 8, 2015 Sheet 3 of 7 US 9,208,314 B1

300

A GO

Retrieve memory of a packed program that includes the code of an obfuscated program
in an unobfuscated state and unpacking code that unpacks the code of the obfuscated
program when the packed program is executed
302

'

Identify an import address table within the memory of the packed program
304

'

Determine, based at least in part on at least one characteristic of the import address
table, that the import address table is an import address table of the code of the
obfuscated program
306

'

Determine that a region of code within the memory of the packed program may be all or
a portion of the code of the obfuscated program by determining that the region of code
uses the import address table
308

'

Perform a security operation on the region of code
310

:
=

FIG. 3

US 9,208,314 Bl

Sheet 4 of 7

Dec. 8, 2015

U.S. Patent

v "Old

90v
uol}08g ejeq

¥0v
a|qe] ssaippy Hodw|

0%
uopeg 8poY

i25%
uonoss ejeq

802
weiboid pareosniqo

447
8|qe] sseJppy Hodw|

viv
uonoss Ejeq

902
apo) Bunppedun

0Ly
uonPseg 8pon)

[4%%
a|qel ssaippy Hoduw)

90v
uoljo8g ejeq

902
apo) Buppedun

(X%
uoIPsg 8pon)

0%
a|ge] ssaippy poduw|

/

gLt Aows|y pexoedun

207
uoi}oag 9poD

N

80¥ Alows|y paxoed

™

00¥ Aowspy

s9s58IpPY JoyBIH
A

oIz
apod

SOSSaIPPY JomoT

U.S. Patent

Region of
Code <
214

JMP Thunk
Table
514

Import
Address Table <
404

US 9,208,314 B1

Instructions
516

Instructions
518

Dec. 8, 2015 Sheet 5 of 7
Unpacked Memory 416
[]
[
[
00401236: PUSH EBP
00401237: MOVE EBP, ESP
[]
[
[
004082E4: CALL DWORD PTR DS3:[00408008] j— 508
[]
[]
[J
00408364: CALL 004015BA — 510
[
®
[]
004084B8: MOVE ESP, EBP
004084BA: POP EBP
004084BB: RET
®
[]
[
004015B4: JMP DWORD PTR DS:[00408000]
004015BA: JMP DWORD PTR DS:[00408004] — 512
004015C0: JMP DWORD PTR DSZ[00408008]
®
[]
[
00408000: 12 5A 36 2E — 500
00408004: 37921577 — 502
00408008: 7C 2EFF A1 — 504
0040800C: 832D CD 2D — 506

FIG. 5

US 9,208,314 B1

Sheet 6 of 7

Dec. 8, 2015

U.S. Patent

9 'Ol

£E9 Z¢€9
20In8(] 8belolS a0Ina(abelo)g
dmypoeg Aewd
829 74
A A 8%IA8(Q 801A8(
ndu Aeidsig
A A
\ 4 y
¥€9 0€9 929 ZL9
aoes]u| 80e8U| Jeydepy aINjonJselju]
abelo)g jndu Aeldsiq uoljesiunwwo)
A A A \
A 4 A 4 A 4
< >
— 20k
oomeE_ 029 819 se|npo 775
UOREDIUNWILIOD Jsfjonuog O/l Js|[0Jjuo) Alowsy — 108S8201d
919
Alowsy weysAs
019
weysAg Bunndwon

US 9,208,314 B1

Sheet 7 of 7

Dec. 8, 2015

U.S. Patent

{N)06Z

a%1A8(

(1006

a%1A8(

56
Aely abelo)g

wabe|

087
ouged NvS

Z "Old

INIOZZ

8o1neQ

(Y379

8o1neQ

A

I8Aleg

ovZ
JETNETS

0€Z
jusld

[
Jualo

001
wejshAs

INJ09Z

ao1Aad

4

A

A

(1jo9z

ao1Aad

A

01z
ualo

AN

004
84N10911UDJY YJOMIBN

US 9,208,314 B1

1
SYSTEMS AND METHODS FOR
DISTINGUISHING CODE OF A PROGRAM
OBFUSCATED WITHIN A PACKED
PROGRAM

BACKGROUND

Because many existing antivirus technologies detect mali-
cious programs (“malware”) by detecting or identifying
unique digital signatures or fingerprints associated with
known-malicious programs, malware authors have attempted
to proliferate malware by generating thousands or potentially
millions of unique variations of the same malicious program.
Often, malware authors may create a unique variation of a
malicious program by packing (e.g., compressing, encrypt-
ing, and/or otherwise obfuscating) the malicious program
within a new program (referred to as a “packed program”).
When the packed program is executed, additional code within
the packed program may unpack (e.g., decompress and/or
decrypt) and then execute the obfuscated malicious program.
This packing process may enable the malicious program to
evade detection by existing antivirus technologies.

Various techniques for unpacking obfuscated programs
from packed programs have been developed to facilitate mal-
ware detection and analysis. Unfortunately, existing tech-
niques for unpacking obfuscated programs from packed pro-
grams are generally unable to distinguish the code of an
obfuscated program contained within a packed program from
the code used by the packed program to unpack the malicious
program. Accordingly, the instant disclosure identifies a need
for additional and improved systems and methods for distin-
guishing code of a program obfuscated within a packed pro-
gram.

SUMMARY

As will be described in greater detail below, the instant
disclosure generally relates to systems and methods for dis-
tinguishing the code of programs obfuscated within packed
programs from other code within the packed programs (e.g.,
unpacking code). In one example, a computer-implemented
method for distinguishing code of a program obfuscated
within a packed program may include (1) retrieving memory
of the packed program that includes the code of the obfus-
cated program in an unobfuscated state and unpacking code
that unpacks the code of the obfuscated program when the
packed program is executed, (2) identifying an import
address table within the memory of the packed program, (3)
determining, based at least in part on at least one character-
istic of the import address table, that the import address table
may be an import address table of the code of the obfuscated
program, (4) determining that a region of code within the
memory of the packed program may be all or a portion of the
code of the obfuscated program by determining that the
region of code uses the import address table, and (5) perform-
ing a security operation on the region of code.

In some embodiments, the step of identifying the import
address table may include (1) identifying import-address-
table entries within the memory of the packed program and
(2) identifying two or more continuous import-address-table
entries from the import-address-table entries that may be the
import address table.

In some embodiments, the step of identifying the import-
address-table entries may include identifying, for each of the
import-address-table entries, a memory address with which at
least one instruction within the memory of the packed pro-
gram uses the import-address-table entry.

10

15

20

25

30

35

40

45

50

55

60

65

2

In some embodiments, the step of determining that the
import address table may be the import address table of the
code ofthe obfuscated program may include determining that
the import address table is the largest import address table
within the memory of the packed program and/or that the
import address table is larger than a predetermined threshold.

In some embodiments, the determination that the import
address table may be the import address table of the code of
the obfuscated program may be based at least in part on where
the import address table is located within the memory of the
packed program in relation to at least one additional import
address table within the memory of the packed program.

In some embodiments, the step of determining that the
import address table may be the import address table of the
code ofthe obfuscated program may include determining that
the import address table includes addresses to shared-library
functions that are not used for unpacking operations and/or
that the import address table was the last import address table
within the memory of the packed program to be populated.

In some embodiments, the step of determining that the
region of code may be all or a portion of the code of the
obfuscated program may include determining that at least one
instruction within the region of code uses the import address
table.

In some embodiments, the step of determining that the
region of code may be all or a portion of the code of the
obfuscated program may include identifying, from among the
functions within the memory of the packed program that
include at least one instruction that uses the import address
table, a first function whose start address within the memory
of'the packed program is lowest and a second function whose
end address within the memory of the packed program is
highest, wherein the region of code includes at least a region
of the memory of the packed program from the start address
of the first function to the end address of the second function.

In some embodiments, the step of performing the security
operation may include analyzing the region of code within the
memory of the packed program and/or determining that the
region of code within the memory of the packed program may
be malware.

In one embodiment, a system for distinguishing code of a
program obfuscated within a packed program may include (1)
aretrieving module, stored in memory, that retrieves memory
of'a packed program that includes the code of the obfuscated
program in an unobfuscated state and unpacking code that
unpacks the code of the obfuscated program when the packed
program is executed, (2) an identifying module, stored in
memory, that identifies an import address table within the
memory of the packed program, (3) an import-address-table
determining module, stored in memory, that determines,
based at least in part on at least one characteristic of the
import address table, that the import address table may be an
import address table of the code of the obfuscated program,
(4) acode-region determining module, stored in memory, that
determines that a region of code within the memory of the
packed program may be all or a portion of the code of the
obfuscated program by determining that the region of code
uses the import address table, (5) a security module, stored in
memory, that performs a security operation on the region of
code, and (6) at least one physical processor that executes the
retrieving module, the identifying module, the import-ad-
dress-table determining module, the code-region determining
module, and the security module.

In some examples, the above-described method may be
encoded as computer-readable instructions on a non-transi-
tory computer-readable medium. For example, a computer-
readable medium may include one or more computer-execut-

US 9,208,314 B1

3

able instructions that, when executed by at least one processor
of' a computing device, may cause the computing device to
distinguish code of a program obfuscated within a packed
program by (1) executing the packed program that includes
the code of the obfuscated program in an unobfuscated state
and unpacking code that unpacks the code of the obfuscated
program when the packed program is executed, (2) identify-
ing an import address table within the memory of the packed
program, (3) determining, based at least in part on at least one
characteristic of the import address table, that the import
address table may be an import address table of the code of the
obfuscated program, (4) determining that a region of code
within the memory of the packed program may be all or a
portion of the code of the obfuscated program by determining
that the region of code uses the import address table, and (5)
performing a security operation on the region of code.
Features from any of the above-mentioned embodiments
may be used in combination with one another in accordance
with the general principles described herein. These and other
embodiments, features, and advantages will be more fully
understood upon reading the following detailed description in
conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate a number of exem-
plary embodiments and are a part of the specification.
Together with the following description, these drawings dem-
onstrate and explain various principles of the instant disclo-
sure.

FIG. 1 is a block diagram of an exemplary system for
distinguishing code of a program obfuscated within a packed
program.

FIG. 2 is a block diagram of an additional exemplary sys-
tem for distinguishing code of a program obfuscated within a
packed program.

FIG. 3 is a flow diagram of an exemplary method for
distinguishing code of a program obfuscated within a packed
program.

FIG. 4 is a block diagram of exemplary memory of various
programs.

FIG. 5 is a block diagram of exemplary memory of a
packed program.

FIG. 6 is a block diagram of an exemplary computing
system capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

FIG. 7 is a block diagram of an exemplary computing
network capable of implementing one or more of the embodi-
ments described and/or illustrated herein.

Throughout the drawings, identical reference characters
and descriptions indicate similar, but not necessarily identi-
cal, elements. While the exemplary embodiments described
herein are susceptible to various modifications and alternative
forms, specific embodiments have been shown by way of
example in the drawings and will be described in detail
herein. However, the exemplary embodiments described
herein are not intended to be limited to the particular forms
disclosed. Rather, the instant disclosure covers all modifica-
tions, equivalents, and alternatives falling within the scope of
the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

The present disclosure is generally directed to systems and
methods for distinguishing code of a program obfuscated
within a packed program. As will be explained in greater

20

25

30

40

45

60

4

detail below, by identifying an import address table within the
memory of a packed program that corresponds to the code of
a malicious program obfuscated within the packed program,
the systems and methods described herein may distinguish
the code of the malicious program from other code within the
memory of the packed program (e.g., unpacking code). More-
over, by distinguishing the code of a malicious program from
other code within the memory of a packed program, the
systems and methods described herein may enable the mali-
cious program to be detected and/or analyzed. Embodiments
of the instant disclosure may also provide various other
advantages and features, as discussed in greater detail below.

The following will provide, with reference to FIGS. 1-2,
detailed descriptions of exemplary systems for distinguishing
code of a program obfuscated within a packed program.
Detailed descriptions of corresponding computer-imple-
mented methods will also be provided in connection with
FIGS. 3-5. In addition, detailed descriptions of an exemplary
computing system and network architecture capable of
implementing one or more of the embodiments described
herein will be provided in connection with FIGS. 6 and 7,
respectively.

FIG. 1 is a block diagram of an exemplary system 100 for
distinguishing code of a program obfuscated within a packed
program. As illustrated in this figure, exemplary system 100
may include one or more modules 102 for performing one or
more tasks. For example, and as will be explained in greater
detail below, exemplary system 100 may include a retrieving
module 104 that retrieves memory of a packed program.
Exemplary system 100 may also include an identifying mod-
ule 106 that that identifies an import address table within the
memory of the packed program. Exemplary system 100 may
further include an import-address-table determining module
108 that determines, based at least in part on at least one
characteristic of the import address table, that the import
address table within the memory of the packed program may
be an import address table of the code of an obfuscated
program.

In addition, and as will be described in greater detail below,
exemplary system 100 may include a code-region determin-
ing module 110 that determines that a region of code within
the memory of the packed program may be all or a portion of
the code of the obfuscated program by determining that the
region of code uses the import address table. Exemplary
system 100 may also include a security module 112 that
performs a security operation on the region of code. Although
illustrated as separate elements, one or more of modules 102
in FIG. 1 may represent portions of a single module or appli-
cation.

In certain embodiments, one or more of modules 102 in
FIG. 1 may represent one or more software applications or
programs that, when executed by a computing device, may
cause the computing device to perform one or more tasks. For
example, and as will be described in greater detail below, one
or more of modules 102 may represent software modules
stored and configured to run on one or more computing
devices, such as computing system 200 in FIG. 2, computing
system 610 in FIG. 6, and/or portions of exemplary network
architecture 700 in FIG. 7. One or more of modules 102 in
FIG. 1 may also represent all or portions of one or more
special-purpose computers configured to perform one or
more tasks.

Exemplary system 100 in FIG. 1 may be implemented in a
variety of ways. For example, all or a portion of exemplary
system 100 may represent portions of exemplary computing
system 200 in FIG. 2. As shown in FIG. 2, computing system
200 may be programmed with one or more of modules 102. In

US 9,208,314 B1

5

one embodiment, one or more of modules 102 from FIG. 1
may, when executed by at least one processor of computing
system 200, enable computing system 200 to distinguish code
of a program obfuscated within a packed program. For
example, and as will be described in greater detail below, one
or more of modules 102 may cause computing system 200 to
distinguish code 210 within packed program 204 by (1)
retrieving memory 212 of packed program 204 that includes
code 210 in an unobfuscated state (e.g., as illustrated in
unpacked memory 416 in FIGS. 4 and 5) and unpacking code
206, (2) identifying an import address table within memory
212 (e.g., import address table 404 within unpacked memory
416), (3) determining, based at least in part on at least one
characteristic of the import address table, that the import
address table may be an import address table of code 210, (4)
determining that a region of code (e.g., region of code 214)
within memory 212 may be all or a portion of code 210 by
determining that the region of code uses the import address
table, and (5) performing a security operation on the region of
code.

Computing system 200 generally represents any type or
form of computing device capable of reading computer-ex-
ecutable instructions. Examples of computing system 200
include, without limitation, laptops, tablets, desktops, serv-
ers, cellular phones, Personal Digital Assistants (PDAs), mul-
timedia players, embedded systems, application servers and
database servers configured to provide various database ser-
vices and/or run certain software applications, combinations
of'one or more of the same, exemplary computing system 610
in FIG. 6, or any other suitable computing device.

FIG. 3 is a flow diagram of an exemplary computer-imple-
mented method 300 for distinguishing code of a program
obfuscated within a packed program. The steps shown in FIG.
3 may be performed by any suitable computer-executable
code and/or computing system. In some embodiments, the
steps shown in FIG. 3 may be performed by one or more of the
components of system 100 in FIG. 1, computing system 200
in FIG. 2, computing system 610 in FIG. 6, and/or portions of
exemplary network architecture 700 in FIG. 7.

As illustrated in FIG. 3, at step 302 one or more of the
systems described herein may retrieve memory of a packed
program that includes the code of an obfuscated program in
an unobfuscated state and unpacking code that unpacks the
code of the obfuscated program when the packed program is
executed. For example, retrieving module 104 may, as part of
computing system 200 in FIG. 2, retrieve memory 212 of
packed program 204 that includes code 210 in an unobfus-
cated state and unpacking code 206. In the examples used
herein, unpacked memory 416 in FIGS. 4 and 5 may represent
a state of memory 212 that includes code 210 in an unobfus-
cated state.

As used herein, the phrase “program” generally refers to
any file that includes code (i.e., instructions) that may be
executed by a computing device (e.g., an executable or a
binary). A program may be formatted according to any suit-
able executable file format. For example, a program may be
formatted according to a Portable Executable (PE) file for-
mat. The phrase “program” may also refer to any program
capable of being executed by a WINDOWS operating system,
a LINUX operating system, a MAC operating system, a
UNIX operating system, and/or any other operating system.

In some examples, a program may include a code section,
an import address table, and a data section that are loaded into
memory when the program is executed. Memory 400 in FI1G.
4 illustrates an exemplary runtime memory state of an exem-
plary program that has not been obfuscated within a packed
program. As shown, the runtime memory state of an exem-

10

15

20

25

30

35

40

45

50

55

60

65

6

plary program that has not been obfuscated within a packed
program may include the program’s code section (e.g., code
section 402), the program’s import address table (e.g., import
address table 404), and the program’s data section (e.g., data
section 406). In the examples used herein, memory 400 may
represent the memory of obfuscated program 208.

In some instances, a program may be packed (e.g., com-
pressed, encrypted, and/or otherwise obfuscated) within
another program (referred to as a “packed program™). For
example, packed program 204 in FIG. 2 may represent a
packed program within which obfuscated program 208 has
been packed. In some examples, a program may be packed
one or more times (e.g., a packed program within which a
program has been packed may also be packed within another
packed program).

In some examples, the phrase “packed program” may refer
to any program created by a packer. The term “packer,” as
used herein, generally refers to any type or form of tool used
to obfuscate programs. Examples of packers that may be used
to obfuscate programs include, without limitation, compres-
sors (e.g., ULTIMATE PACKER FOR EXECUTABLES
(UPX), ASPACK, and UPACK) that compress files, crypters
(e.g., POLYCRYPT PE) that encrypt files, protectors (e.g.,
ARMADILLO and THEMIDA) that both compress and
encrypt files, bundlers (such as PEBUNDLE and MOLE-
BOX) that bundle multiple executable and data files into a
single bundled executable file, and the like.

In some examples, a packed program may include a code
section, an import address table, and a data section that are
loaded into memory when the packed program is executed. In
some examples, the obfuscated program packed within a
packed program may be stored within the packed program’s
data section. Packed memory 408 in FIG. 4 illustrates an
exemplary runtime memory state of a packed program when
the packed program is first loaded into memory and before
any unpacking code ofthe packed program is executed. In this
state, as shown in FIG. 4, the memory of the packed program
may include the packed program’s code section (e.g., code
section 410), the packed program’s import address table (e.g.,
import address table 412), and the packed program’s data
section (e.g., data section 414) that may include a program in
an obfuscated state.

At runtime, the code of a packed program (e.g., unpacking
code) may unpack (e.g., decompress and/or decrypt) the pro-
gram obfuscated within the packed program. The unpacking
code of a packed program may unpack an obfuscated program
such that the obfuscated program exist within the memory of
the packed program in an unobfuscated and executable state.
As will be explained in greater detail below, the unpacking
code of a packed program may also populate the import
address table of the obfuscated program as part of unpacking
the obfuscated program. Unpacked memory 416 in FIG. 4
illustrates an exemplary runtime memory state of a packed
program after the unpacking code of the packed program has
unpacked the program obfuscated within the packed pro-
gram. In this state, as shown in FIG. 4, the memory of the
packed program may include the obfuscated program’s code
section (e.g., code section 402) in an unobfuscated state, the
obfuscated program’s import address table (e.g., import
address table 404) in an unobfuscated state, and the obfus-
cated program’s data section (e.g., data section 406) in an
unobfuscated state. In the examples used herein, packed
memory 408 and unpacked memory 416 may represent runt-
ime states of memory 212.

Returning to FIG. 3, the systems described herein may
perform step 302 in any suitable manner. In one example,
retrieving module 104 may capture the memory of a packed

US 9,208,314 B1

7

program within which the code of an obfuscated program
exists in an unobfuscated state by capturing the memory of
the packed program after the packed program has executed
for at least long enough for unpacking code of the packed
program to unpack (e.g., decompress and/or decrypt) the code
of the obfuscated program into the memory of the packed
program. Using FIG. 4 as an example, executing module 104
may capture unpacked memory 416 after unpacking code 206
has unpacked obfuscated program 208 from packed memory
408. In at least one example, retrieving module 104 may
retrieve the memory of a packed program using an unpacker.
For example, retrieving module 104 may retrieve the memory
of a packed program using a static analysis-based unpacker
capable of unpacking the packed program without executing
the packed program.

At step 304, one or more of the systems described herein
may identify an import address table within the memory of
the packed program. For example, identifying module 106
may, as part of computing system 200 in FIG. 2, identify
import address tables 404 and 412 within unpacked memory
416 of packed program 204.

Asusedherein, the phrase “import address table” generally
refers to a lookup table that may be used by a program to
access shared-library functions (e.g., dynamic-link library
functions). At runtime, a program’s import address table may
include pointers to the shared-library functions that may be
accessed by the program. Each entry of an import address
table may include the address of a shared-library function.
However, when a program is first loaded into memory the
program’s import address table may include information that
may be used to look up the shared-library functions accessed
by the program, and a loader may use this information to
populate the import address table with the addresses of the
shared-library functions that may be accessed by the pro-
gram.

When loading a packed program, a loader may populate the
import address table of the packed program but may be unable
to populate the import address table of a obfuscated program
because the import address table of the obfuscated program
may be in an obfuscated state when the packed program is
first loaded into memory. For at least this reason, the unpack-
ing code of the packed program may populate the import
address table of an obfuscated program as part of unpacking
the obfuscated program before executing the obfuscated pro-
gram.

The systems described herein may perform step 304 in any
suitable manner. For example, identifying module 106 may
identify an import address table within the memory of a
packed program by identifying each entry of the import
address table within the memory of the packed program. In
some examples, identifying module 106 may identify an
entry of an import address table within the memory of a
packed program by identifying the instructions within the
memory of the packed program that use the entry to access a
shared-library function.

Various instructions may be used to access a function of a
shared library via an import-address-table entry. For example,
a shared-library function may be accessed via an import-
address-table entry using an indirect call instruction (e.g., a
call instruction that uses a pointer to an import-address-table
entry such as instruction 508 in FIG. 5). Additionally or
alternatively, a shared-library function may be accessed via
an import-address-table entry using a jmp-thunk-table based
call (e.g., a call instruction that calls a jmp instruction that
uses a pointer to an import-address-table entry such as
instructions 510 and 512 in FIG. 5). For at least this reason,
identifying module 106 may identify an import-address-table

15

20

25

35

40

45

55

8

entry by identifying each indirect call or jmp-thunk-table
based call within the memory of a packed program and by
identifying the address of the import-address-table entry with
which the instructions access the import-address-table entry.

Using FIG. 5 as an example, identifying module 106 may
identify import-address-table entries 500-506 by identifying
each indirect call or jmp-thunk-table based call within
unpacked memory 416 (e.g., instructions 508-512) and by
identifying the addresses of import-address-table entries 500-
506 with which these instructions access import-address-
table entries 500-506 (e.g., address “00408008 used by
instruction 508 to access import-address-table entry 504 and
address “00408004” used by instructions 510 and 512 to
access import-address-table entry 502). Identifying module
106 may identify import-address-table entries 500 and 506 in
a similar manner.

In general, the entries of an import address table may be
continuous within the memory of a packed program. As such,
upon identifying all or a portion of the import-address-table
entries within the memory of a packed program, identifying
module 106 may identify an import address table by identi-
fying two or more continuous import-address-table entries
within the memory ofthe packed program. Using FIG. 5 as an
example, identifying module 106 may identify import
address table 404 by determining that import-address-table
entries 500-508 are located continuously within unpacked
memory 416.

In at least one example, identifying module 106 may iden-
tify each entry of an import address table by monitoring the
unpacking code of a packed program as the unpacking code
populates the entries of the import address table. In some
instances, the unpacking code of a packed program may use
certain shared-library functions (e.g., “GetProcAddress™) to
determine an address of a shared-library function to include
within an import-address-table entry. For at least this reason,
identifying module 106 may identify the address that may be
included in an import-address-table entry by hooking calls to
such shared-library functions. Upon identifying an address
that may be included in an import-address-table entry, iden-
tifying module 106 may identity the location of the import-
address-table entry within the memory of the packed program
by searching the memory of the packed program for the
address.

At step 306, one or more of the systems described herein
may determine, based at least in part on at least one charac-
teristic of the import address table, that the import address
table is an import address table of the code of the obfuscated
program. For example, import-address-table determining
module 108 may, as part of computing system 200 in FIG. 2,
determine that import address table 404 in FIG. 4 may be the
import address table of obfuscated program 208 based on
import address table 404 being larger than import address
table 412.

The systems described herein may perform step 306 in any
suitable manner. In one example, import-address-table deter-
mining module 108 may determine which import address
table from among the import address tables found within the
memory of a packed program is the import address table of
the code of the obfuscated program by comparing one or more
characteristics of the import address tables (suchas, e.g., size,
location, and/or shared-library function addresses).

In some instances, the unpacking code of a packed program
may use a relatively small number of shared-library functions
to unpack an obfuscated program as compared to the number
of shared-library functions used by the obfuscated program.
For at least this reason, whether an import address table is the
largest import table found within the memory of a packed

US 9,208,314 B1

9

program may indicate whether the import address table is or
is not an import address table of an obfuscated program
packed within the packed program. As such, import-address-
table determining module 108 may determine that an import
address table is the import address table of an obfuscated
program by determining that the import address table is the
largest import address table within the memory of a packed
program.

In some instances, the location of an import address table
within the memory of a packed program in relation to other
import address tables within the memory of the packed pro-
gram may indicate whether the import address table is or is
not an import address table of an obfuscated program. For
example in some instances, the data section of a program may
be located at higher addresses within the memory of the
program as compared to the location of the import address
table and/or the code section of the program (e.g., as illus-
trated in FIGS. 4 and 5). Because obfuscated programs are
generally stored within the data section of a packed program,
import-address-table determining module 108 may deter-
mine that an import address table is the import address table
of an obfuscated program by determining that the import
address table has the highest address compared to other
import address tables within the memory of a packed pro-
gram.

In some instances, whether an import address table
includes addresses to shared-library functions other than
those used for unpacking operations may indicate whether the
import address table is or is not an import address table of an
obfuscated program. For example in some instances, the
import address table of a packed program may include the
addresses of shared-library functions that are used to allocate
memory, change memory protection, and/or populate import
address tables. As such, import-address-table determining
module 108 may determine that an import address table is the
import address table of an obfuscated program by determin-
ing that the import address table includes addresses to shared-
library functions that are not used for unpacking operations.

As mentioned above, the unpacking code within a packed
program may populate the import address table of an obfus-
cated program as part of unpacking the obfuscated program.
In at least one example, import-address-table determining
module 108 may determine that an import address table may
be the import address table of an obfuscated program by
determining that the import address table was the last import
address table within the memory of a packed program to be
populated.

In some examples, import-address-table determining mod-
ule 108 may determine whether an import address table from
among the import address tables found within the memory of
a packed program may be the import address table of an
obfuscated program by examining one or more characteris-
tics of the import address table. For example in some
instances, whether an import address table is larger than a
predetermined threshold may indicate whether the import
address table is or is not an import address table of an obfus-
cated program. As such, import-address-table determining
module 108 may determine that an import address table is the
import address table of an obfuscated program by determin-
ing that the import address table is larger than a predeter-
mined threshold.

At step 308, one or more of the systems described herein
may determine that a region of code within the memory of the
packed program may be all or a portion of the code of the
obfuscated program by determining that the region of code
uses the import address table. For example, code-region
determining module 110 may, as part of computing system

20

25

30

40

45

50

55

10
200 in FIG. 2, determine that region of code 214 of packed
program 204 may be all or a portion of code 210 by deter-
mining that region of code 214 uses import address table 404.

The systems described herein may perform step 308 in any
suitable manner. In one example, code-region determining
module 110 may identify a region of code within the memory
of the packed program that may include all or a portion the
code of the obfuscated program by identifying each function
within the memory of the packed program within which an
instruction uses the import address table and by determining
that the region of code includes at least each identified func-
tion.

In some examples, code-region determining module 110
may identify a region of code within the memory of the
packed program that may include all or a portion the code of
the obfuscated program by tracking the start address and the
end address of each function within the memory of the packed
program within which an instruction uses the import address
table and by determining that the region of code includes at
least the memory of the packed program between the lowest
identified start address and the highest identified end address.
Using FIG. 5 as an example, code-region determining module
110 may determine that region of code 214 includes the
region of memory of packed program 204 from address
00401236 to address 00408466 by determining that instruc-
tions 516 represent the start of a function with the lowest start
address of any function that uses import address table 404
(e.g., the start address of the function that includes instruction
508) and by determining that instructions 518 represent the
end of a function with the highest end address of any function
that uses import address table 404 (e.g., the end address of the
function that includes instruction 510).

At step 310, one or more of the systems described herein
may perform a security operation on the region of code. For
example, security module 112 may, as part of computing
system 200 in FIG. 2, perform a security operation on region
of code 214.

The systems described herein may perform step 310 in any
suitable manner. For example, security module 112 may per-
form the security operation on the region of code by classi-
fying (e.g., as malicious, potentially malicious, or benign) the
region of code, by classifying the obfuscated program to
which the region of code belongs, by classifying the packed
program within which the region of code has been obfus-
cated, by preventing the region of code from executing, and/
or by notifying a user who is attempting to execute the packed
program that the packed program is potentially malicious.

Additionally and/or alternatively, security module 112
may perform the security operation on the region of code by
analyzing the region of code. For example, security module
112 may analyze the region of code for features of malware
that may be used to classify the region of code as malicious,
potentially malicious, or benign. Upon completion of step
310, exemplary method 300 in FIG. 3 may terminate.

As explained above, by identifying an import address table
within the memory of a packed program that corresponds to
the code of a malicious program obfuscated within the packed
program, the systems and methods described herein may
distinguish the code of the malicious program from other
code within the memory of the packed program (e.g., unpack-
ing code). Moreover, by distinguishing the code of a mali-
cious program from other code within the memory of a
packed program, the systems and methods described herein
may enable the malicious program to be detected and/or
analyzed. For example, the systems and methods described
herein may detect and analyze the code of a malicious pro-
gram obfuscated within a packed program by (1) retrieving

US 9,208,314 B1

11

memory of the packed program that includes the malicious
program in an unobfuscated state, (2) identifying an import
address table within the memory of the packed program, (3)
determining that the import address table within the memory
of'the packed program is an import address table of the code
of the malicious program, (4) determining that a region of
code within the memory of the packed program corresponds
to the code of the malicious program by determining that the
region of code uses the import address table, and (5) classi-
fying the region of code as malicious.

FIG. 6 is a block diagram of an exemplary computing
system 610 capable of implementing one or more of the
embodiments described and/or illustrated herein. For
example, all or a portion of computing system 610 may per-
form and/or be a means for performing, either alone or in
combination with other elements, one or more of the steps
described herein (such as one or more of the steps illustrated
in FIG. 3). All or a portion of computing system 610 may also
perform and/or be a means for performing any other steps,
methods, or processes described and/or illustrated herein.

Computing system 610 broadly represents any single or
multi-processor computing device or system capable of
executing computer-readable instructions. Examples of com-
puting system 610 include, without limitation, workstations,
laptops, client-side terminals, servers, distributed computing
systems, handheld devices, or any other computing system or
device. In its most basic configuration, computing system 610
may include at least one processor 614 and a system memory
616.

Processor 614 generally represents any type or form of
physical processing unit (e.g., a hardware-implemented cen-
tral processing unit) capable of processing data or interpret-
ing and executing instructions. In certain embodiments, pro-
cessor 614 may receive instructions from a software
application or module. These instructions may cause proces-
sor 614 to perform the functions of one or more of the exem-
plary embodiments described and/or illustrated herein.

System memory 616 generally represents any type or form
of volatile or non-volatile storage device or medium capable
of storing data and/or other computer-readable instructions.
Examples of system memory 616 include, without limitation,
Random Access Memory (RAM), Read Only Memory
(ROM), flash memory, or any other suitable memory device.
Although not required, in certain embodiments computing
system 610 may include both a volatile memory unit (such as,
for example, system memory 616) and a non-volatile storage
device (such as, for example, primary storage device 632, as
described in detail below). In one example, one or more of
modules 102 from FIG. 1 may be loaded into system memory
616.

In certain embodiments, exemplary computing system 610
may also include one or more components or elements in
addition to processor 614 and system memory 616. For
example, as illustrated in FIG. 6, computing system 610 may
include a memory controller 618, an Input/Output (I/O) con-
troller 620, and a communication interface 622, each of which
may be interconnected via a communication infrastructure
612. Communication infrastructure 612 generally represents
any type or form of infrastructure capable of facilitating com-
munication between one or more components of a computing
device. Examples of communication infrastructure 612
include, without limitation, a communication bus (such as an
Industry Standard Architecture (ISA), Peripheral Component
Interconnect (PCI), PCI Express (PCle), or similar bus) and a
network.

Memory controller 618 generally represents any type or
form of device capable of handling memory or data or con-

10

20

30

35

40

45

50

65

12

trolling communication between one or more components of
computing system 610. For example, in certain embodiments
memory controller 618 may control communication between
processor 614, system memory 616, and I/O controller 620
via communication infrastructure 612.

1/0O controller 620 generally represents any type or form of
module capable of coordinating and/or controlling the input
and output functions of a computing device. For example, in
certain embodiments /O controller 620 may control or facili-
tate transfer of data between one or more elements of com-
puting system 610, such as processor 614, system memory
616, communication interface 622, display adapter 626, input
interface 630, and storage interface 634.

Communication interface 622 broadly represents any type
or form of communication device or adapter capable of facili-
tating communication between exemplary computing system
610 and one or more additional devices. For example, in
certain embodiments communication interface 622 may
facilitate communication between computing system 610 and
a private or public network including additional computing
systems. Examples of communication interface 622 include,
without limitation, a wired network interface (such as a net-
work interface card), a wireless network interface (such as a
wireless network interface card), a modem, and any other
suitable interface. In at least one embodiment, communica-
tion interface 622 may provide a direct connection to aremote
server via a direct link to a network, such as the Internet.
Communication interface 622 may also indirectly provide
such a connection through, for example, a local area network
(such as an Ethernet network), a personal area network, a
telephone or cable network, a cellular telephone connection,
a satellite data connection, or any other suitable connection.

In certain embodiments, communication interface 622
may also represent a host adapter configured to facilitate
communication between computing system 610 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, without limitation, Small Computer System Inter-
face (SCSI) host adapters, Universal Serial Bus (USB) host
adapters, Institute of Electrical and Electronics Engineers
(IEEE) 1394 host adapters, Advanced Technology Attach-
ment (ATA), Parallel ATA (PATA), Serial ATA (SATA), and
External SATA (eSATA) host adapters, Fibre Channel inter-
face adapters, Ethernet adapters, or the like. Communication
interface 622 may also allow computing system 610 to
engage in distributed or remote computing. For example,
communication interface 622 may receive instructions from a
remote device or send instructions to a remote device for
execution.

As illustrated in FIG. 6, computing system 610 may also
include at least one display device 624 coupled to communi-
cation infrastructure 612 via a display adapter 626. Display
device 624 generally represents any type or form of device
capable of visually displaying information forwarded by dis-
play adapter 626. Similarly, display adapter 626 generally
represents any type or form of device configured to forward
graphics, text, and other data from communication infrastruc-
ture 612 (or from a frame buffer, as known in the art) for
display on display device 624.

As illustrated in FIG. 6, exemplary computing system 610
may also include at least one input device 628 coupled to
communication infrastructure 612 via an input interface 630.
Input device 628 generally represents any type or form of
input device capable of providing input, either computer or
human generated, to exemplary computing system 610.

US 9,208,314 B1

13

Examples of input device 628 include, without limitation, a
keyboard, a pointing device, a speech recognition device, or
any other input device.

As illustrated in FIG. 6, exemplary computing system 610
may also include a primary storage device 632 and a backup
storage device 633 coupled to communication infrastructure
612 via a storage interface 634. Storage devices 632 and 633
generally represent any type or form of storage device or
medium capable of storing data and/or other computer-read-
able instructions. For example, storage devices 632 and 633
may be a magnetic disk drive (e.g., a so-called hard drive), a
solid state drive, a floppy disk drive, a magnetic tape drive, an
optical disk drive, a flash drive, or the like. Storage interface
634 generally represents any type or form of interface or
device for transferring data between storage devices 632 and
633 and other components of computing system 610.

In certain embodiments, storage devices 632 and 633 may
be configured to read from and/or write to a removable stor-
age unit configured to store computer software, data, or other
computer-readable information. Examples of suitable remov-
able storage units include, without limitation, a floppy disk, a
magnetic tape, an optical disk, a flash memory device, or the
like. Storage devices 632 and 633 may also include other
similar structures or devices for allowing computer software,
data, or other computer-readable instructions to be loaded
into computing system 610. For example, storage devices 632
and 633 may be configured to read and write software, data, or
other computer-readable information. Storage devices 632
and 633 may also be a part of computing system 610 or may
be a separate device accessed through other interface sys-
tems.

Many other devices or subsystems may be connected to
computing system 610. Conversely, all of the components
and devices illustrated in FIG. 6 need not be present to prac-
tice the embodiments described and/or illustrated herein. The
devices and subsystems referenced above may also be inter-
connected in different ways from that shown in FIG. 6. Com-
puting system 610 may also employ any number of software,
firmware, and/or hardware configurations. For example, one
or more of the exemplary embodiments disclosed herein may
be encoded as a computer program (also referred to as com-
puter software, software applications, computer-readable
instructions, or computer control logic) on a computer-read-
able medium. The phrase “computer-readable medium,” as
used herein, generally refers to any form of device, carrier, or
medium capable of storing or carrying computer-readable
instructions. Examples of computer-readable media include,
without limitation, transmission-type media, such as carrier
waves, and non-transitory-type media, such as magnetic-stor-
age media (e.g., hard disk drives, tape drives, and floppy
disks), optical-storage media (e.g., Compact Disks (CDs),
Digital Video Disks (DVDs), and BLU-RAY disks), elec-
tronic-storage media (e.g., solid-state drives and flash media),
and other distribution systems.

The computer-readable medium containing the computer
program may be loaded into computing system 610. All or a
portion of the computer program stored on the computer-
readable medium may then be stored in system memory 616
and/or various portions of storage devices 632 and 633. When
executed by processor 614, a computer program loaded into
computing system 610 may cause processor 614 to perform
and/or be a means for performing the functions of one or more
of the exemplary embodiments described and/or illustrated
herein. Additionally or alternatively, one or more of the exem-
plary embodiments described and/or illustrated herein may
be implemented in firmware and/or hardware. For example,
computing system 610 may be configured as an Application

10

15

20

25

30

35

40

45

50

55

60

65

14

Specific Integrated Circuit (ASIC) adapted to implement one
or more of the exemplary embodiments disclosed herein.

FIG. 7 is a block diagram of an exemplary network archi-
tecture 700 in which client systems 710, 720, and 730 and
servers 740 and 745 may be coupled to a network 750. As
detailed above, all or a portion of network architecture 700
may perform and/or be a means for performing, either alone
or in combination with other elements, one or more of the
steps disclosed herein (such as one or more of the steps
illustrated in FIG. 3). All or a portion of network architecture
700 may also be used to perform and/or be a means for
performing other steps and features set forth in the instant
disclosure.

Client systems 710, 720, and 730 generally represent any
type or form of computing device or system, such as exem-
plary computing system 610 in FIG. 6. Similarly, servers 740
and 745 generally represent computing devices or systems,
such as application servers or database servers, configured to
provide various database services and/or run certain software
applications. Network 750 generally represents any telecom-
munication or computer network including, for example, an
intranet, a WAN, a LAN, a PAN, or the Internet. In one
example, client systems 710, 720, and/or 730 and/or servers
740 and/or 745 may include all or a portion of system 100
from FIG. 1.

As illustrated in FIG. 7, one or more storage devices 760
(1)-(N) may be directly attached to server 740. Similarly, one
or more storage devices 770(1)-(N) may be directly attached
to server 745. Storage devices 760(1)-(N) and storage devices
770(1)-(N) generally represent any type or form of storage
device or medium capable of storing data and/or other com-
puter-readable instructions. In certain embodiments, storage
devices 760(1)-(N) and storage devices 770(1)-(N) may rep-
resent Network-Attached Storage (NAS) devices configured
to communicate with servers 740 and 745 using various pro-
tocols, such as Network File System (NFS), Server Message
Block (SMB), or Common Internet File System (CIFS).

Servers 740 and 745 may also be connected to a Storage
Area Network (SAN) fabric 780. SAN fabric 780 generally
represents any type or form of computer network or architec-
ture capable of facilitating communication between a plural-
ity of storage devices. SAN fabric 780 may facilitate commu-
nication between servers 740 and 745 and a plurality of
storage devices 790(1)-(N) and/or an intelligent storage array
795. SAN fabric 780 may also facilitate, via network 750 and
servers 740 and 745, communication between client systems
710, 720, and 730 and storage devices 790(1)-(N) and/or
intelligent storage array 795 in such a manner that devices
790(1)-(N) and array 795 appear as locally attached devices
to client systems 710, 720, and 730. As with storage devices
760(1)-(N) and storage devices 770(1)-(N), storage devices
790(1)-(N) and intelligent storage array 795 generally repre-
sent any type or form of storage device or medium capable of
storing data and/or other computer-readable instructions.

In certain embodiments, and with reference to exemplary
computing system 610 of FIG. 6, a communication interface,
such as communication interface 622 in FIG. 6, may be used
to provide connectivity between each client system 710, 720,
and 730 and network 750. Client systems 710, 720, and 730
may be able to access information on server 740 or 745 using,
for example, a web browser or other client software. Such
software may allow client systems 710, 720, and 730 to
access data hosted by server 740, server 745, storage devices
760(1)-(N), storage devices 770(1)-(N), storage devices 790
(1)-(N), or intelligent storage array 795. Although FIG. 7
depicts the use of a network (such as the Internet) for

US 9,208,314 B1

15

exchanging data, the embodiments described and/or illus-
trated herein are not limited to the Internet or any particular
network-based environment.

In at least one embodiment, all or a portion of one or more
of the exemplary embodiments disclosed herein may be
encoded as a computer program and loaded onto and executed
by server 740, server 745, storage devices 760(1)-(N), storage
devices 770(1)-(N), storage devices 790(1)-(N), intelligent
storage array 795, or any combination thereof. All or a portion
of one or more of the exemplary embodiments disclosed
herein may also be encoded as a computer program, stored in
server 740, run by server 745, and distributed to client sys-
tems 710, 720, and 730 over network 750.

As detailed above, computing system 610 and/or one or
more components of network architecture 700 may perform
and/or be a means for performing, either alone or in combi-
nation with other elements, one or more steps of an exemplary
method for distinguishing code of a program obfuscated
within a packed program.

While the foregoing disclosure sets forth various embodi-
ments using specific block diagrams, flowcharts, and
examples, each block diagram component, flowchart step,
operation, and/or component described and/or illustrated
herein may be implemented, individually and/or collectively,
using a wide range of hardware, software, or firmware (or any
combination thereof) configurations. In addition, any disclo-
sure of components contained within other components
should be considered exemplary in nature since many other
architectures can be implemented to achieve the same func-
tionality.

In some examples, all or a portion of exemplary system 100
in FIG. 1 may represent portions of a cloud-computing or
network-based environment. Cloud-computing environ-
ments may provide various services and applications via the
Internet. These cloud-based services (e.g., software as a ser-
vice, platform as a service, infrastructure as a service, etc.)
may be accessible through a web browser or other remote
interface. Various functions described herein may be pro-
vided through a remote desktop environment or any other
cloud-based computing environment.

In various embodiments, all or a portion of exemplary
system 100 in FIG. 1 may facilitate multi-tenancy within a
cloud-based computing environment. In other words, the
software modules described herein may configure a comput-
ing system (e.g., a server) to facilitate multi-tenancy for one
or more of the functions described herein. For example, one
or more of the software modules described herein may pro-
gram a server to enable two or more clients (e.g., customers)
to share an application that is running on the server. A server
programmed in this manner may share an application, oper-
ating system, processing system, and/or storage system
among multiple customers (i.e., tenants). One or more of the
modules described herein may also partition data and/or con-
figuration information of a multi-tenant application for each
customer such that one customer cannot access data and/or
configuration information of another customer.

According to various embodiments, all or a portion of
exemplary system 100 in FIG. 1 may be implemented within
a virtual environment. For example, the modules and/or data
described herein may reside and/or execute within a virtual
machine. As used herein, the phrase “virtual machine” gen-
erally refers to any operating system environment that is
abstracted from computing hardware by a virtual machine
manager (e.g., a hypervisor). Additionally or alternatively,
the modules and/or data described herein may reside and/or
execute within a virtualization layer. As used herein, the
phrase “virtualization layer” generally refers to any data layer

10

15

20

25

30

35

40

45

50

55

60

65

16

and/or application layer that overlays and/or is abstracted
from an operating system environment. A virtualization layer
may be managed by a software virtualization solution (e.g., a
file system filter) that presents the virtualization layer as
though it were part of an underlying base operating system.
For example, a software virtualization solution may redirect
calls that are initially directed to locations within a base file
system and/or registry to locations within a virtualization
layer.

Insome examples, all or a portion of exemplary system 100
in FIG. 1 may represent portions of a mobile computing
environment. Mobile computing environments may be
implemented by a wide range of mobile computing devices,
including mobile phones, tablet computers, e-book readers,
personal digital assistants, wearable computing devices (e.g.,
computing devices with a head-mounted display, smart-
watches, etc.), and the like. In some examples, mobile com-
puting environments may have one or more distinct features,
including, for example, reliance on battery power, presenting
only one foreground application at any given time, remote
management features, touchscreen features, location and
movement data (e.g., provided by Global Positioning Sys-
tems, gyroscopes, accelerometers, etc.), restricted platforms
that restrict modifications to system-level configurations and/
or that limit the ability of third-party software to inspect the
behavior of other applications, controls to restrict the instal-
lation of applications (e.g., to only originate from approved
application stores), etc. Various functions described herein
may be provided for a mobile computing environment and/or
may interact with a mobile computing environment.

In addition, all or a portion of exemplary system 100 in
FIG. 1 may represent portions of, interact with, consume data
produced by, and/or produce data consumed by one or more
systems for information management. As used herein, the
phrase “information management” may refer to the protec-
tion, organization, and/or storage of data. Examples of sys-
tems for information management may include, without limi-
tation, storage systems, backup systems, archival systems,
replication systems, high availability systems, data search
systems, virtualization systems, and the like.

In some embodiments, all or a portion of exemplary system
100 in FIG. 1 may represent portions of, produce data pro-
tected by, and/or communicate with one or more systems for
information security. As used herein, the phrase “information
security” may refer to the control of access to protected data.
Examples of systems for information security may include,
without limitation, systems providing managed security ser-
vices, data loss prevention systems, identity authentication
systems, access control systems, encryption systems, policy
compliance systems, intrusion detection and prevention sys-
tems, electronic discovery systems, and the like.

According to some examples, all or a portion of exemplary
system 100 in FIG. 1 may represent portions of, communicate
with, and/or receive protection from one or more systems for
endpoint security. As used herein, the phrase “endpoint secu-
rity” may refer to the protection of endpoint systems from
unauthorized and/or illegitimate use, access, and/or control.
Examples of systems for endpoint protection may include,
without limitation, anti-malware systems, user authentication
systems, encryption systems, privacy systems, spam-filtering
services, and the like.

The process parameters and sequence of steps described
and/or illustrated herein are given by way of example only
and can be varied as desired. For example, while the steps
illustrated and/or described herein may be shown or discussed
in a particular order, these steps do not necessarily need to be
performed in the order illustrated or discussed. The various

US 9,208,314 B1

17

exemplary methods described and/or illustrated herein may
also omit one or more of the steps described or illustrated
herein or include additional steps in addition to those dis-
closed.

While various embodiments have been described and/or
illustrated herein in the context of fully functional computing
systems, one or more of these exemplary embodiments may
be distributed as a program product in a variety of forms,
regardless of the particular type of computer-readable media
used to actually carry out the distribution. The embodiments
disclosed herein may also be implemented using software
modules that perform certain tasks. These software modules
may include script, batch, or other executable files that may
be stored on a computer-readable storage medium or in a
computing system. In some embodiments, these software
modules may configure a computing system to perform one
or more of the exemplary embodiments disclosed herein.

In addition, one or more of the modules described herein
may transform data, physical devices, and/or representations
of physical devices from one form to another. For example,
one or more of the modules recited herein may receive the
unpacked memory of a packed program to be transformed,
transform the unpacked memory of the packed program into
all or a portion of the code of a program that has been obfus-
cated within the packed program, output a result of the trans-
formation to a system for analyzing and/or classitying mal-
ware, use the result of the transformation to analyze the code
of the obfuscated program and/or classify the packed pro-
gram and/or the obfuscated program as malware, and store
the result of the transformation to a storage system for storing
malicious and/or benign code samples. Additionally or alter-
natively, one or more of the modules recited herein may
transform a processor, volatile memory, non-volatile
memory, and/or any other portion of a physical computing
device from one form to another by executing on the comput-
ing device, storing data on the computing device, and/or
otherwise interacting with the computing device.

The preceding description has been provided to enable
others skilled in the art to best utilize various aspects of the
exemplary embodiments disclosed herein. This exemplary
description is not intended to be exhaustive or to be limited to
any precise form disclosed. Many modifications and varia-
tions are possible without departing from the spirit and scope
of the instant disclosure. The embodiments disclosed herein
should be considered in all respects illustrative and not
restrictive. Reference should be made to the appended claims
and their equivalents in determining the scope of the instant
disclosure.

Unless otherwise noted, the terms “connected to” and
“coupled to” (and their derivatives), as used in the specifica-
tion and claims, are to be construed as permitting both direct
and indirect (i.e., via other elements or components) connec-
tion. In addition, the terms “a” or “an,” as used in the speci-
fication and claims, are to be construed as meaning “at least
one of.” Finally, for ease of use, the terms “including” and
“having” (and their derivatives), as used in the specification
and claims, are interchangeable with and have the same
meaning as the word “comprising.”

What is claimed is:

1. A computer-implemented method for distinguishing
code of a program obfuscated within a packed program, at
least a portion of the method being performed by a computing
device comprising at least one processor, the method com-
prising:

retrieving memory of the packed program, wherein the

memory of the packed program comprises at least:

10

15

20

25

30

35

40

45

50

55

60

65

18

the code of the obfuscated program in an unobfuscated
state;
unpacking code that unpacks the code of the obfuscated
program when the packed program is executed;
identifying a first import address table and a second import
address table within the memory of the packed program;
determining, based at least in part on a comparison
between at least one characteristic of the first import
address table and at least one characteristic of the second
import address table, that the first import address table is
an import address table of the code of the obfuscated
program;
determining that a region of code within the memory of the
packed program comprises the code of the obfuscated
program by determining that the region of code uses the
first import address table;

performing a security operation on the region of code.

2. The computer-implemented method of claim 1, wherein
identifying the first import address table comprises:

identifying import-address-table entries within the

memory of the packed program;

identifying two or more continuous import-address-table

entries from the import-address-table entries, wherein
the two or more continuous import-address-table entries
comprise the first import address table.

3. The computer-implemented method of claim 2, wherein
identifying the import-address-table entries comprises iden-
tifying, for each of the import-address-table entries, a
memory address with which at least one instruction within the
memory of the packed program accesses the import-address-
table entry.

4. The computer-implemented method of claim 1, wherein
determining that the first import address table is the import
address table of the code of the obfuscated program com-
prises determining that the first import address table is larger
than the second import address table.

5. The computer-implemented method of claim 1, wherein
determining that the first import address table is the import
address table of the code of the obfuscated program com-
prises determining that the first import address table is larger
than a predetermined threshold.

6. The computer-implemented method of claim 1, wherein
the determination that the first import address table is the
import address table of the code of the obfuscated program is
based at least in part on where the first import address table is
located within the memory of the packed program in relation
to the second import address table within the memory of the
packed program.

7. The computer-implemented method of claim 1, wherein
determining that the first import address table is the import
address table of the code of the obfuscated program com-
prises determining that the first import address table com-
prises addresses to shared-library functions that are not used
for unpacking operations.

8. The computer-implemented method of claim 1, wherein
determining that the first import address table is the import
address table of the code of the obfuscated program com-
prises determining that the first import address table was
populated later than the second import address table.

9. The computer-implemented method of claim 1, wherein
determining that the region of code comprises the code of the
obfuscated program comprises determining that at least one
instruction within the region of code uses the first import
address table.

10. The computer-implemented method of claim 1,
wherein determining that the region of code comprises the
code of the obfuscated program comprises:

US 9,208,314 B1

19

identifying functions within the memory of the packed
program that include at least one instruction that uses the
first import address table;

identifying, from among the functions within the memory
of the packed program that include at least one instruc-
tion that uses the first import address table:
afirst function whose start address within the memory of

the packed program is lowest;

a second function whose end address within the memory
of the packed program is highest, wherein the region
of code comprises a region of the memory of the
packed program from the start address of the first
function to the end address of the second function.

11. The computer-implemented method of claim 1,
wherein performing the security operation on the region of
code comprises determining that the region of code com-
prises malware.

12. The computer-implemented method of claim 11, fur-
ther comprising, in response to determining that the region of
code comprises malware, performing at least one of:

preventing the region of code from executing;

notifying a user who is attempting to execute the packed
program that the packed program is potentially mali-
cious.

13. A system for distinguishing code of a program obfus-

cated within a packed program, the system comprising:

a retrieving module, stored in memory, that retrieves
memory of the packed program, wherein the memory of
the packed program comprises:
the code of the obfuscated program in an unobfuscated

state;

unpacking code that unpacks the code of the obfuscated
program when the packed program is executed;

an identifying module, stored in memory, that identifies a
first import address table and a second import address
table within the memory of the packed program;

an import-address-table determining module, stored in
memory, that determines, based at least in part on a
comparison between at least one characteristic of the
first import address table and at least one characteristic
of the second import address table, that the first import
address table is an import address table of the code of the
obfuscated program;

a code-region determining module, stored in memory, that
determines that a region of code within the memory of
the packed program comprises the code of the obfus-
cated program by determining that the region of code
uses the first import address table;

a security module, stored in memory, that performs a secu-
rity operation on the region of code;

at least one physical processor that executes the retrieving
module, the identifying module, the import-address-
table determining module, the code-region determining
module, and the security module.

14. The system of claim 13, wherein the identifying mod-

ule identifies the first import address table by:
identifying import-address-table entries
memory of the packed program;
identifying two or more continuous import-address-table
entries from the import-address-table entries, wherein
the two or more continuous import-address-table entries
comprise the first import address table.

15. The system of claim 14, wherein the identifying mod-
ule identifies the import-address-table entries by identifying,
for each of the import-address-table entries, a memory

within the

10

20

25

30

35

40

45

50

55

60

20

address with which at least one instruction within the memory
of the packed program accesses the import-address-table
entry.

16. The system of claim 13, wherein the import-address-
table determining module determines that the first import
address table is the import address table of the code of the
obfuscated program by determining that the first import
address table is larger than the second import address table.

17. The system of claim 13, wherein the import-address-
table determining module determines that the first import
address table is the import address table of the code of the
obfuscated program based at least in part on where the first
import address table is located within the memory of the
packed program in relation to the second import address table
within the memory of the packed program.

18. The system of claim 13, wherein the import-address-
table determining module further determines that the first
import address table is the import address table of the code of
the obfuscated program by determining that the first import
address table comprises addresses to shared-library functions
that are not used for unpacking operations.

19. The system of claim 13, wherein the code-region deter-
mining module determines that the region of code comprises
the code of the obfuscated program by:

identifying functions within the memory of the packed

program that include at least one instruction that uses the

first import address table;

identifying, from among the functions within the memory

of the packed program that include at least one instruc-

tion that uses the first import address table:

afirst function whose start address within the memory of
the packed program is lowest;

a second function whose end address within the memory
of the packed program is highest, wherein the region
of code comprises a region of the memory of the
packed program from the start address of the first
function to the end address of the second function.

20. A non-transitory computer-readable medium compris-
ing one or more computer-executable instructions that, when
executed by at least one processor of a computing device,
cause the computing device to distinguish code of a program
obfuscated within a packed program by:

retrieving memory of the packed program, wherein the

memory of the packed program comprises at least:
the code of the obfuscated program in an unobfuscated
state;
unpacking code that unpacks the code of the obfuscated
program when the packed program is executed;
identifying a first import address table and a second import
address table within the memory of the packed program;

determining, based at least in part on a comparison
between at least one characteristic of the first import
address table and at least one characteristic of the second
import address table, that the first import address table is
an import address table of the code of the obfuscated
program;

determining that a region of code within the memory of the

packed program comprises the code of the obfuscated

program by determining that the region of code uses the
first import address table;

performing a security operation on the region of code.

#* #* #* #* #*

